The Entropy Dissipation Method for Spatially Inhomogeneous Reaction–diffusion Type Systems

نویسنده

  • PETER A. MARKOWICH
چکیده

We study the large–time asymptotics of reaction–diffusion type systems, which feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimising) equilibrium state in terms of the constants of diffusion and reaction and with respect to conserved quantities. Our method, the so called entropy approach, seeks to quantify convergence to equilibrium by using functional inequalities, which relate quantitatively the entropy and its dissipation in time. The entropy approach is well suited to nonlinear problems and known to be quite robust with respect to model variations. It has already been widely applied to scalar diffusion–convection equations and the main goal of this paper is to study its generalisation to systems of partial differential equations, which contain diffusion and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of reaction–diffusion–convection system arising in solid state physics as a paradigm for general nonlinear systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Decay Towards Equilibrium for the Inhomogeneous Aizenman-Bak Model

The Aizenman-Bak model for reacting polymers is considered for spatially inhomogeneous situations in which they diffuse in space with a nondegenerate size-dependent coefficient. Both the break-up and the coalescence of polymers are taken into account with fragmentation and coagulation constant kernels. We demonstrate that the entropy-entropy dissipation method applies directly in this inhomogen...

متن کامل

Application of the Slow Invariant Manifold Correction for Diffusion

Slow invariant manifolds (SIM) are calculated for spatially inhomogeneous closed reactive systems to obtain a model reduction. A robust method of constructing a onedimensional SIM by calculating equilibria and then integrating along heteroclinic orbits is extended to two new cases: i) adiabatic systems, and ii) spatially inhomogeneous systems with simple diffusion. The adiabatic condition can b...

متن کامل

A robust and efficient method for steady state patterns in reaction-diffusion systems

An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton's method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, ...

متن کامل

Gradient structures and geodesic convexity for reaction-diffusion systems.

We consider systems of reaction-diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic λ-convexity of the entropy functional by purely differential methods, thus circumventing argu...

متن کامل

Rigorous Derivation of a Nonlinear Diffusion Equation as Fast-reaction Limit of a Continuous Coagulation–fragmentation Model with Diffusion

Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008